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Abstract—We propose a new approach for the low-rate iden-
tification of memory polynomials (MPs), which are frequently
used to model RF power amplifiers (PAs). Based on ideas from
the finite rate of innovation framework, we find the coefficients
of the MP in the frequency domain, which requires a relatively
small number of measurements (samples), commensurate with
the degrees of freedom in the model. By choosing a random
set of frequency components, the stability of the identification
is ensured. We show that the method can be used directly
for special input signals, such as one used for orthogonal
frequency division multiplexing, and extend the idea for arbitrary
inputs. Experiments using measured data from a class-AB PA
demonstrate the effectiveness of the approach. The sampling rate
for identifying this PA is reduced by a factor of 1024 (from
107.52MHz to 105 kHz).

I. INTRODUCTION

Digital predistortion is a widely used approach for enhancing
the linearity and efficiency of state-of-the-art power amplifiers
(PAs) [1]. In a typical system, the weakly nonlinear PA is
preceded by a digital predistorter (DPD) that is continuously
adapted to approximate the PA’s inverse (see Fig. 1). While
there are several options for identifying the inverse (direct
learning, indirect learning, etc.) [2], a common issue with
all existing techniques is the relatively large and growing
bandwidth that must be digitized by the analog-to-digital
converter (ADC) in the system’s observation path. For example,
with a signal bandwidth of 100MHz in Long Term Evolution
(LTE) Advanced, the output spectrum of the PAs spans several
hundred megahertz due to spectral regrowth. Digitizing the
full output spectrum without aliasing requires expensive and
power-hungry ADCs that are beginning to become a roadblock
in the design of cost-efficient systems.

Interestingly, it has been recognized that aliasing is permis-
sible for identifying the system, and that the sampling rate
fs of the ADC can be chosen in accordance with the input
signal bandwidth, rather than the output bandwidth of the
PA [3], [4], [5], [6]. However, this method still calls for an
acquisition bandwidth that includes the spectral re-growth to
obtain accurate time domain samples, and thus fsig � fs/2
at the input of the ADC (see Fig. 1). Since the cost and
power efficiency of an ADC is related to both the acquisition
bandwidth and sampling rate (which is in any case just reduced
by a relatively small factor), this approach does not lead to a
sustainable solution for future systems.

In this paper, we present a new approach to nonlinear
system identification in the frequency domain, where the output
signal can be sampled at a substantially lower rate, and a
smaller number of measurements is needed to find the model
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Fig. 1. RF power amplifier with digital predistortion.

coefficients. The method does not rely on aliasing and therefore
the ADC’s acquisition bandwidth can be reduced in accordance
with the low sampling rate. The technique is built around a
system setup where one first identifies a behavioral model of
the PA, and then determines the DPD function in subsequent
steps [1]. We limit the scope of this paper to the former aspect,
i.e. the identification of the PA.

The rest of this paper is organized as follows. In Section
II we show that it is possible to identify the PA by extracting
a set of Fourier coefficients. Section III then explains how
these coefficients are obtained. In Section IV, we evaluate the
technique using experiments with one synthetic and one real
hardware PA. Section V concludes this paper.

II. IDENTIFYING THE NONLINEAR SYSTEM

A popular choice for modeling nonlinear dynamical systems
is the Volterra series. However, due to the high model
complexity and overmodeling issues, truncated variants are
used in practice, where the memory polynomial (MP) provides
a good tradeoff between complexity and performance [1]. In
this model,

y[n] =
P∑
p=1

Q∑
q=0

cpq · zp[n− q], zp[n] = xp[n]. (1)

Here, x[n] is the input signal, y[n] is the output signal that
results from sampling y(t) at the Nyquist rate fNYQ of the
model, P is the nonlinearity order, Q is the memory depth
and cpq are the model coefficients.

Usually, cpq are found in the time domain, either on a sample-
by-sample basis using algorithms like least mean squares (LMS)
[7] or least squares (LS) [8]. Motivated by results from the
finite rate of innovation (FRI) framework [9], [10], we propose
solving the system in the frequency domain. In the continuous
time domain, the p-th order kernel of (1) can be regarded as
an FRI signal with fixed time delays:
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hp(t) =

Q∑
q=0

cpq · δ(t− tq) (2)

where tq = q/fNYQ. Since (2) is defined by no more than Q+1
degrees of freedom (DoF), we expect that (1) can be identified
by a minimum of P · (Q+ 1) samples. Hence, our goal is to
reduce the sampling rate as much as possible, independent of
the model’s Nyquist rate. A solution for identifying an impulse
response obeying the FRI model was presented in [11]. This
approach works for arbitrary input signals but relies on an
approximation of the discrete-time Fourier transform (DTFT)
of the impulse response by the discrete Fourier transform (DFT),
which is only met under certain conditions. Furthermore, the
described method is unstable when the taps of the impulse
response are clustered around the origin, which is usually the
case for a PA model.

In the following two subsections, we first outline a solution
for the case of periodic input signals and then generalize to
arbitrary signals.

A. Periodic Input Signals

We start by applying the DTFT to (1):

Y (ejω) =
P∑
p=1

Q∑
q=0

cpq · Zp(ejω) · e−jωq (3)

where the DTFT is defined as

X(ejω) =
∞∑

n=−∞
x[n] · e−jωn. (4)

The problem with (3) is that each value for Y (ejω) requires
an integration of the analog signal y(t) from −∞ to ∞.
However, if we assume a periodic input x[n] of length N ,
the output signal is also periodic. In this case, the spectra
Y (ejω) and Zp(ejω) can be sampled at ω = 2π

N k to obtain

Y [k] =
P∑
p=1

Q∑
q=0

cpq · Zp[k] · e−j
2π
N kq (5)

where Y [k] and Zp[k] denote the DFT of y[n] and zp[n],
respectively, with the DFT defined as:

X[k] =
N−1∑
n=0

x[n] · e−j 2π
N kn. (6)

Note that the DFT corresponds to the Fourier coefficients of
the analog signal y(t) using N samples at t = nTNYQ. More
precisely, the PA performs an aperiodic convolution while the
DFT assumes cyclic convolution. Let us now assume that the
input signal is split into N -length blocks, and denote the l-
th block as xl[n], 0 ≤ n ≤ N − 1. The discrepancy is then
captured by two factors (illustrated in Fig. 2(b)):

1) Parts of the convolution for xl−1[n] leak into xl[n].
2) The convolution of the end of xl[n] leaks into xl+1[n].

But this part must wrap around to the beginning of xl[n].

t
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t

(b)

t

(c)

Fig. 2. Correction of the DFT (a) 3-block input signal (b) aperiodic
convolution. Signal leaking from previous block (light gray). Signal leaking
into next block (dark gray) (c) corrected block by removing light contribution
and wrapping dark contribution as done by (15).

Apart from periodic signals, the equivalence between cyclic
and aperiodic convolution is maintained for finite-length signals
or for signals with a cyclic prefix (CP), as for instance in orthog-
onal frequency division multiplexed (OFDM) communication.
The only requirements are that the impulse response is shorter
than the CP and that the block length N matches the useful
symbol duration of the OFDM signal. The coefficients are
then found from (5) by obtaining at least P (Q + 1) Fourier
coefficients.

A similar result was recently published in [12]. However, this
solution relies on probing the system with P ·(Q+1) sinusoidal
input signals and only makes use of the p-th harmonic in the
output signal.

B. Arbitrary Input Signals

Based on the approach described in [13], we incorporate
appropriate boundary conditions to ensure the equivalence
between Y [k] of an arbitrary block and the right side of (5).
To simplify notation, we define a windowed DTFT as follows:

Xa,b(ejω) =
b∑

n=a

x[n]e−jωn. (7)

The DTFT used in (3) sums y[n] from −∞ to ∞. However,
the objective is to find an expression for Y 0,N−1(ejω) as this
would correspond to the definition of the DFT over a block
from n = 0, . . . , N − 1. In the first step, we let n = 0, . . . ,∞.
For the result to be valid, the sum over zp[n] must be adjusted
to incorporate values down to n = −Q. This results in

Y 0,∞(ejω) =
P∑
p=1

Q∑
q=0

cpq · e−jωq · Z−q,∞p (ejω). (8)

The term for Zp can be split as follows:

Z−q,∞p (ejω) = Z−q,−1p (ejω) + Z0,∞
p (ejω) (9)

= Z0,∞
p (ejω) +

q∑
n=1

zp[−n]ejωn. (10)
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In the second step, we let n = N, . . . ,∞. Again, for the
result to be valid, the summation for zp[n] must start q samples
earlier:

Y N,∞(ejω) =
P∑
p=1

Q∑
q=0

cpq · e−jωq · ZN−q,∞p (ejω), (11)

with

ZN−q,∞p (ejω) = ZN−q,N−1p (ejω) + ZN,∞p (ejω). (12)

The term ZN−q,N−1p can be simplified as follows:

ZN−q,N−1p (ejω) =
−1∑

n=−q
zp[n+N ]e−jω(n+N) (13)

= e−jωN
q∑

n=1

zp[N − n]ejωn. (14)

In the final step, (14) is subtracted from (8), which yields:

Y 0,N−1(ejω) =
P∑
p=1

Q∑
q=0

cpq · e−jωq
(
Z0,N−1
p (ejω)+

+

q∑
n=1

(zp[−n]− zp[N − n]) ejω(n−q)
)
.

This result equals the DFT for ω = 2π
N k and resembles (5)

very closely. The extra sum corresponds to the boundary con-
ditions for the leakage discussed previously. This is illustrated
in Fig. 2. This term equals zero for finite signals with a finite
length, periodic signals or signals with an appropriate CP.

To summarize, the result obtained by using the DFT of the
non-periodic output signal y[n] can be corrected by adding the
following correction term to Zp[k] in (5):

q∑
n=1

(zp,−1[N − n]− zp,0[N − n]) ej
2π
N k(n−q). (15)

The method can be generalized to the full Volterra model
[2], which results in:

Y [k] =
P∑
p=1

Q1∑
q1=0

· · ·
Qp∑
qp=0

cp,q1,··· ,qpDFT

{
p∏
r=1

x[n− qr]

}
.

(16)
Unfortunately, due to the cross terms, the result cannot be
written in terms of Zp[k] because the result is a p-fold
convolution of X[k]e−j2πkqr/N . However, this approach allows
us to extend the MP with cross terms. Although a DFT is
required for each additional cross term, it is reasonable when
the number of these coefficients is small.

III. OBTAINING THE FOURIER COEFFICIENTS

While (5) can be solved using a low pass approximation,
it was proposed to sample the spectrum at random locations
[14], which greatly improves the reconstruction stability. For
this reason, we select a set of M ≥ P · (Q + 1) randomly

cpq
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Fig. 3. Sequential demodulation with L branches.
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Fig. 4. Demodulation of one Fourier coefficients per block. The correct result
is obtained when the mixing sequences are guaranteed to run over a whole
block.

chosen frequency bins. The effect of the frequency selection
on the reconstruction stability is currently being investigated.
Based on practical considerations, we decided to use sequential
demodulation: In each block of length Tblk = 1/fblk, the input
signal is demodulated, integrated for Tblk and sampled at
rate fblk (see Fig. 3). The demodulation approach works if the
mixing sequence is guaranteed to run over a whole block. Since
we need to allow for settling of the modulation sequences, it
takes two blocks to demodulate one coefficient (see Fig. 4).
Furthermore, following the developments presented in [10], it is
possible to extend the architecture to multiple branches so as to
recover additional coefficients. Per 2L demodulation branches,
L coefficients per block can be obtained. Tblk is chosen given
the tradeoff between the undersampling ratio, identification
time, and number of branches. During identification, the
system is assumed to be time-invariant, which is a reasonable
assumption for PAs [15]. The values of Zp[k] in (5) are
calculated in the time domain from xp[n]. Since only LP
bins per block are required, they can be calculated efficiently
using the Goertzel algorithm.

IV. NUMERICAL RESULTS

To verify the functionality of the method, we use the PA
model from example 2 of [8], which was extracted from a
real class-AB PA. A 20MHz LTE signal is generated, up-
sampled to 307.2MHz and fed through the model. Using a
block size of N = 4096, the 15 coefficients are recovered up
to machine precision (MSE = 3.8 · 10−13) after 15 blocks
(critical sampling).

In our second experiment, we use data from a GaN class-
AB PA carrying a 5MHz Wideband Code Division Multiple
Access (WCDMA) signal. The data consists of two sets of input
and output signals of the PA, each N = 32768 samples long
and sampled at 107.52MHz. The first set is used to identify
the model (i.e., the MP), whereas the second set is used to
assess the quality of the model. An MP with nonlinearity
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Fig. 5. NMSE vs. number of measurements. For the proposed method, the
NMSE is averaged over 50 trials with randomly chosen frequency locations
and a fixed input signal.

orders p = {1, 3, 5} and a memory depth of 2 taps (Q = 1) is
assumed.

Fig. 5 shows the normalized mean square error (NMSE) for
conventional approaches [7], [8] which use all samples at the
Nyquist rate and the proposed approach for different numbers
of samples M . We choose a block size of Nblk = 1024,
corresponding to a sampling rate of 105 kHz (a 1024-fold
reduction). It can be seen that the proposed approach requires
far fewer samples than the conventional approach for a certain
model accuracy. For example, our method achieves the same
NMSE as the conventional approach with M = 32768 samples
using only M = 1581 samples. With the low sampling rate
of 105 kHz, the identification time is increased by a factor of
49 compared to the conventional approach. The identification
time can be reduced by increasing the number of branches
or by sacrificing model accuracy. For example, an NMSE of
−34.31 dB (<1 dB penalty relative to the minimum in Fig. 5)
requires only M = 33 samples. In this case, the identification
time is roughly 56% longer than the conventional approach
with M = 32768. Fig. 6 shows the power spectrum of the
input and output signals along with the model outputs.

Although the proposed method suggests an increased compu-
tational load due to additional calculations of frequency bins, it
requires far fewer samples and results in a smaller LS system.
Potentially, this results in a lower computational cost.

V. CONCLUSION

We have presented a new approach for the low-rate iden-
tification of MPs and explored the idea in the context of PA
system identification. Compared to conventional schemes, this
method avoids sampling the output signal at the Nyquist rate
and does not require the acquisition of the full spectrum. The
model coefficients are obtained by measuring a random set of
components using a frequency domain model. The technique
offers a flexible trade-off between accuracy, complexity and
identification time through adjusting the block size and the
number of branches.
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Fig. 6. Output spectrum of a PA identified with M = 33 samples
(proposed, NMSE: −34.31 dB) and with M = 32768 (conventional, NMSE:
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ACKNOWLEDGMENT

This work was funded by the Stanford Initiative for Re-
thinking Analog Design (RAD). We thank Anding Zhu for
providing the test data used in this paper.

REFERENCES

[1] F. M. Ghannouchi and O. Hammi, “Behavioral modeling and predistor-
tion,” IEEE microwave magazine, vol. 10, no. 7, pp. 52–64, 2009.

[2] A. Zhu, “Digital predistortion and its combination with crest factor reduc-
tion,” in Digital Front-End in Wireless Communication and Broadcasting.
Cambridge University Press, 2011.

[3] Y.-M. Zhu, “Generalized sampling theorem,” IEEE Trans. on Circuit
and Systems II, vol. 39, no. 8, pp. 587–588, 1992.

[4] W. Frank, “Sampling requirements for volterra system identification,”
IEEE Signal Processing Letters, vol. 3, no. 9, pp. 266–268, 1996.

[5] H. Koeppl and P. Singerl, “An efficient scheme for nonlinear modeling
and predistortion in mixed-signal systems,” IEEE Trans. on Circuit and
Systems II: Express Briefs, vol. 53, no. 12, pp. 1368–1372, 2006.

[6] L. Ding, F. Mujica, and Z. Yang, “Digital predistortion using direct
learning with reduced bandwidth feedback,” in 2013 IEEE MTT-S
International Microwave Symposium Digest, Jun 2013, pp. 1–3.

[7] D. Zhou and V. E. DeBrunner, “Novel adaptive nonlinear predistorters
based on the direct learning algorithm,” IEEE Trans. on Si, vol. 55, no. 1,
pp. 120–133, Jan 2007.

[8] L. Ding, G. Zhou, D. Morgan, M. Zhengxiang, J. Kenney, K. Jaehyeong,
and C. Giardina, “A robust digital baseband predistorter constructed using
memory polynomials,” IEEE Trans. on Comm, vol. 52, pp. 159–165, Jan
2004.

[9] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate
of innovation,” IEEE Trans. on Signal Processing, vol. 50, no. 6, pp.
1417–1428, Jun 2002.

[10] K. Gedalyahu, R. Tur, and Y. C. Eldar, “Multichannel sampling of pulse
streams at the rate of innovation,” IEEE Trans. on Signal Processing,
vol. 59, pp. 1491–1504, 2011.

[11] M. McCormick, Y. M. Lu, and M. Vetterli, “Learning sparse systems at
sub-nyquist rates: A frequency-domain approach,” in IEEE International
Conference on Acoustics Speech and Signal Processing (ICASSP), 2010.

[12] A. Bolstad and B. A. Miller, “Sparse volterra systems: Theory and
practice,” in Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, 2013, pp. 5740–5744.

[13] R. Pintelon, J. Schoukens, and G. Vandersteen, “Frequency domain
system identification using arbitrary signals,” IEEE Trans. on Automatic
Control, vol. 42, no. 12, pp. 1717–1720, Dec 1997.

[14] N. Wagner, Y. C. Eldar, and Z. Friedman, “Compressed beamforming in
ultrasound imaging,” IEEE Trans. on Signal Processing, vol. 60, no. 9,
pp. 4643–4657, Sep 2012.

[15] L. Ding, “Digital predistortion of power amplifiers for wireless applica-
tions,” Ph.D. dissertation, Georgia Institute of Technology, 2004.

1037


